
ordinate; u, velocity component in the x direction; v, velocity component in the y direction; 
x, distance along the axis; y, distance from the free surface of film; y', distance from 
wall; ~, heat-transfer coefficient; ~, film thickness; %, thermal conductivity; ~, dynamic 
viscosity; p, density; n, shear stress. Subscripts: c, cooling medium; eff, effective proper- 
ties; f, film; G, gas; I, free film surface; L, liquid; s, saturation line; t, turbulent com- 
ponent; w, wall. 
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INFLUENCE OF VARIABLE VISCOSITY ON THE HEAT TRANSFER 

IN A LAMINAR FLUID FILM 

Yu. P. Gertsen and L. Ya. Zhivaikin UDC 536.24:532.54 

An expression taking account of the heat" flux direction during heat transfer in a 
laminar fluid film is obtained from the approximate solution of the equations of 

motion and heat conduction. 

The influence of a temperature change in the viscosity across the layer is not taken in- 
to account in the majority of papers [1-4] examining heat transfer in fluid films although 
experimental results on the cooling, heating, and also the change in the temperature drop 
yield different results. Some authors [5] use the factor (vf/Vw) ~ by analogy with heat 
transfer in pipes [6] or on the basis of the Bays experiments [7] conducted in short tubes. 

We attempted to estimate the influence of variable viscosity on heat transfer on the 
basis of an analytical solution of the fundamental equations. 

Stable two-dimensional flowof a laminar fluid layer along a vertical wall with a semi- 
infinite heating section is considered. The Ox axis of the coordinate system is on the solid 
boundary in the flow direction, while the Oy axis is perpendicular to the stream and the wall. 
For x < 0 the wall temperature is to, while for x:~O it is given by a smooth function tw(X). 
The change in the kinetic viscosity coefficient v(t) is approximated by a hyperbola. Heat 
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liberation due to friction and the changes in p, p, ~ with the temperature are considered neg- 
ligible. 

For x I>0 the equations or motion and-heat conduction for a laminar layer are written 
as follows in dimensionless form 

1 O [N(T) Ou ] 3 . (i) 
0 = 0,1 [ + ' 

t t e re  

h z OT O~T 
- - U  --  (2) 

3 O[ 0q ~ 

----x/3 Pe60; ~1 -g /5oh ;  6o--: (3voF/g)~/3; U =U/Uo; 

h = 5/60; uo =- F/6o; T (~, ~1) : :  (t - -  to)/At; 0 (~) = (t~ - -  to)/At; 

At -- max J t - -  to[; N (T) = = v (0/% =- [1 -i- b (t - -  to)] -~ == (I § BT)-~; 

B=bAt ;  R e 0 = 4 R o = 4 F v o ~ ;  P e = F a - ' .  

The b o u n d a r y  c o n d i t i o n s  t a k e  account :  of  t h e  a b s e n c e  o f  t a n g e n t i a l  s t r e s s e s  and heat:  f l u x  on 
the free surface 

U(~, 0) ~ 0 ;  OU(~, I) = 0 ;  (3) 

T ( [ < 0 ,  0 ) = 0 ;  T ( ~ 0 ,  0 ) : :  0(~); Or(~, l, 0. 
0~ 

The e q u a t i o n  o f  m o t i o n  (Z) i s  i n t e g r a t e d  i n  g e n e r a l  form w i t h  (3) t a k e n  i n t o  a c c o u n t  

(4) 

U (~, rl) = 3h 2 f (1 - -  rl) d'q :-= 3h 2 ~ (1 - -  'q)(1 q- BT) 
I N(T) 

d~. (5) 

Substituting the velocity profile (5) into (2), we obtain the equation 

h ~OT [(I - -B ) ( I  q- BT)dq == 02--~T (6) 

0 

In  o r d e r  t o  a p p r o x i m a t e  t h i s  p r o b l e m  t o  t h e  N u s s e l t  f o r m u l a t i o n  [ 8 ] ,  we assume t h e  f u n c t i o n  
e (~)  t o  v a r y  s m o o t h l y  b e t w e e n  0 and  0 = + l  ( h e a t i n g - - c o o l i n g )  i n  t h e  s e c t i o n  0 < ~ < Ao, 
where ho can be sufficiently small. 

We represent the solution of (6) in the form of a power series in q: 

T([, "q) ---- 0(~) + s ~p~ (~) 11 ~. (7) 
i= I  

Substituting (7) into (6) and equating coefficients of identical powers of q, we obtain a 
general expression for the term ~i of the series (7) for ~ > ho: 

i(ih----~ [ 1 ) ( ~ - 3 - - ~ - ~ , - ~ I ,  ) (v.i-4 ~'-~ �9 ) ]  ~ i ( ~ ) = _  ( l q - B 0 ) + B  t X ~ t ~ - t - 3 =  l + l  ~-~j~z~-t-~:=~ l + 2  " (8) 

The first terms of series (7) can be expressed in terms of ~I: 

h ~ h~ , h s 
~c2=0; ~3 =0 ;  ~, -----~ (I +B0)~] ;  ~s = ~ - ~ ,  [Bqh--( 1 +B0)]; ~ 6  : I 9_0IBq)l~)l; 

= ' [ 8 ~ -  (1 -i- 840 1344 (P~ 5 0 - 4  (1 + B0)  * ~ , "  ~cs = h s - -  ' B0)  2 q- ~ct~o, -}- q)l B j .  (9) 
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Here and henceforth the prime denotes differentiation with respect to ~. For series (7) the 
second of the boundary conditions (4) goes over into 

i ~ t  (~) = o .  (i0) 
i=l 

We substitute (9) here and obtain an ordinary differential equation for the heat flux on the 
solid surface ~: 

525 2520 147 B 24 B 15 B 
~P~+ llh~(1 +BO) (t)~ + llhS(l+BO)~qo~ q- llh'(1 +BiJ) (p~cp~ q- l l ( I + B O )  (P~q)[ + 11(1 +BO) q ~ '  = 0 .  (ii) 

The solution ~o for the linear part of (ii) has the form 

q~to----Cmexp h4(l +B~) q-C~exp h"(l q-B~) 

Here dx = 5.412 and d2 -- 42.31.  The d imens ion le s s  l a y e r  t h i c k n e s s  i s  assumed to  be a s lowly  
varying function. Taking into account that the coefficients of the nonlinear terms depend 
on B and have a noticeably lesser value than for the linear terms, it can be assumed that the 
correction to the heat flux for the nonlinearity ~ = ~ --~io is considerably less than 
~o. It can be shown that dj § 2~ is satisfied as the number of terms taken into account 
in the series (7) increases, where ~j are the eigenvalues of the iinear Gertz problem for a 
plane tube with boundary conditions of the first kind [6, 9], whose formulation is identical 
to the linear problem of heat transfer in a fluid layer in the absence of heat transport 
through the free surface. Therefore 

f=l  

The c o e f f i c i e n t s  Cjo remain undetermined but should equal  the  cor responding  c o e f f i c i e n t s  
of  the  l i n e a r  problem as B ~ 0. 

In  e s t i m a t i n g  the  convergence of  s e r i e s  (7) i t  should be t aken  i n t o  account  t h a t  the  
s igns  of ~z and 6 as  we l l  as of  ~'~ and ~x are  o p p o s i t e ;  t h e r e f o r e ,  the  terms of  s e r i e s  (7) 
fo rma  s i g n - v a r y i n g  group. The s i g n  of  the  term hence depends on the  r e l a t i o n s h i p  between 
the  components; the  genera l  e x p r e s s i o n  (8) f o r  ~ i  i s  a l so  a s i g n - v a r y i n g  s e r i e s .  Then i t s  
magnitude can be e s t ima ted  by means o f  t he  g r e a t e s t  component. Moreover, s ince  the  o rde r  of  
the  q u a n t i t i e s  h ,  B, ICjol does not exceed one,  then  by us ing  (8) and (12) we o b t a i n  the  f o l -  
lowing estimates 

t~,1 < i ( i - -  I )  < i ( i  - -  l )  ( i  - -  3) ( i - -  4) ( i  - -  6 ) .  �9 1 "<  (2k)!  ' 

where m = [i/3]; k = [i/2] (here [x] is the integer part of the number). 

ies 

In connection with the fact that solutions with finite Bj,for which the majorizing ser- 

N 

~(2~)mCt0(2k)! -~ converges absolutely, have physical meaning, the series (7)isconvergent. 
i=! 

For ~ > ~o = Ao + 0 .055,  cp,o i s  de sc r ibed  wi th  s u f f i c i e n t  accuracy  by an e x p o n e n t i a l  
with the minir~am eigenvalue ~j : 

~,o~C, oexp[--A(~--Ao)]; A = 2~ 
a, (1 + ~o) 

Substituting the first six terms of the series (7) into (9), we obtain for ~,: 

(14) 

Here p~ = 4.8h-4(i + B~) -I and ql = 0.28B(I + Be)-*. 

According to the principles mentioned earlier px must be replaced by A, then the linear- 

ized equation for ~i~ becomes 
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where 

The solution of (15) has the form 

q41 + Pz(hl = qz, (15) 

Pl (I - -  Aql~,o) Aqtq)~ o 

l + q6ho ; qz = l + ql%o 

t 

= + 1 (1 
%ll,>,o = [.j" qzexP;o ( ~  

Here  ~Plo(5o) = Cloexp[--A(5o -- Ao) ] .  The q u a n t i t y  ~ ( ~ o )  i s  a c o r r e c t i o n  to  t h e  hea t  f l u x  
for the nonlinearity at 5 = ~o, it cannot be determined within the framework of this ap- 
proximation. 

It can be shown from the conditions for formulation of the problem that the mean tem- 
perature of the layer at a distance ~ from the origin is 

rm (-~) . . . . .  r - qq~ = 0  ~ + 2 ~ 

It was taken into account in the calculations that T m -~ O as ~ + oo. 

number is defined as [6] 

Nu (D . . . . .  

~. 0 - -  Tm (~) 
The mean Nusselt number is introduced as follows: 

t < ~ > t S .  = 1 Nu(~)a~ 1 
< Nu (D > = ~ ~ 3~ 

o 

tn 6 -  Tm 

1 "-t" q'cP'~ (~})~ .]~. (17)  
(1 + qiqho) .t 

The local Nusselt 

(18) 

( ) - -Tm (o) (19)  

_ 21~ 1 In W (D = 1,88 i In IF, 

where 

Ahg q)~o(~o) (1 " qm~,o) J 

It is here taken into account that Tm(0) = 0 as well as that the signs of ~xo and 0 are 
opposite. An analysis of the expression W(~) shows that the quantity W does not exceed 2 as 
the parameter B varies between sufficiently broad limits, even if it is admitted that ~I~(~o) z 
~1o(Eo). The component, including the logarithm, can therefore be considered negligible (to 
5%) for ~ > 5 or x > 15Pe6o. 

The formula for <Nu(oo)> as E § oo differs from the result obtained by Nusselt [i] by the 
factor h -~ (i~ + B~# -I. Let us note that it follows from the formula for the layer thickness 
d = (3vP/g) I/~ that h § (I + B~) -~3 as ~ § ~. Then 

1.88 ( ,% 1'/3 
< N u ( ~ ) > - -  (1 B ~ 0 ) , - T -  = 1.88 (20) + kvw / " 

The thickness of the isothermal flux ~f at some mean temperature tf can be selected as 
the unit of length, then ~f = (3vjF/g) ~/3 from which 6f/~o = (vj/vo) ~f~. After renormaliza- 
tion, the Nusselt number <Nu(~)> equals �9 

< N u ( o o ) > , =  <~>5' = 1 . 8 8 ( v '  11.:3 
k Va, 7 (21) 

If the wall temperature tw(=) is taken as governing, then the factor in the right-hand 
side of (21) equals i, i.e., <Nu(=)> w = 1.88. Therefore, the average heat-transport inten- 
sity on the heating section 0 < { < 5 has the same value with the variable viscosity taken 
into account as for heating of a fluid with unchangeable properties with a layer thickness 
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Fig. i. Comparison of the mean Nusselt 
number <Nu(~)>f (open point~) and the 
quantities <Nu(~)>f(~f/~w)u (blackened 
points) for laminar and pseudolaminar 
flows of aqueous glycerine solutions of 
different concentrations [i0] and water 
[ii]: i) 82.9; 2) 72.3; 3) 14%; 4) 
water. 

which it takes on as ~ § = [8]. However, the use of (21) is more convenient in that all 
the fluid properties in practical heat-transfer computations are determined for its mean 
(arithmetic mean) temperature. At the same time, the wall temperature is to be determined 
because of the approximate solution of the conjugate problem of convective heat transfer, 
hence, its selection as governing results in considerable difficulties. 

To compare the result obtained with experiment, data obtained on pipes of sufficient 
length for known wall temperatures were selected. The open points in the Fig. i are values 
of <Nu>f for aqueous solutions of glycerine of different concentrations [10] and of water 
[ii], the blackened points are values of <Nu(~)>f(~f/~w)-~3 computed for the same tests. All 
the points lie in the Reynolds number range Ref < Re* = 2460 Pr~ ~ [4] in which the Nus- 
selt heat transfer law is valid. Moreover, the condition $ > 0.05(inW)/3 was confirmed. The 
wall temperature varied negligibly along the pipe length. 

It is seen from the figure that the influence of the variable viscosity on the heat 
transfer grows with the increase in the initial viscosity ~o, which is apparently associated 
with the growth of the parameter b. 

The values of <Nu>f(vf/~w) -~3 lie considerably nearer to the quantity 1.88 than the cor- 
responding values of <Nu>f. The rms deviation is 8% in the first case and 32.4% in the 
second. 

Therefore, the influence of variable viscosity on the intensity of heat transfer in a 
laminar film is noticeable and can be taken into account by (21). 

NOTATION 

Re = 4F/~ = 4R, Reynolds criterion; Pe = r/a, Peclet criterion; Pr = v/a, Prandtl cri- 
terion; Nu = ~6/%, <Nu> = <~>~/%, local and mean Nusselt criterion; F, volume irrigation den- 
sity, m2/sec; b, B = bAt, dimensional (deg -z) and dimensionless coefficients taking account 
of the temperature dependence of the viscosity; c, specific heat of the fluid, J/kg.deg; g, 
free-fall acceleration, m/sec 2 ; h -- 6/6o, dimensionless flux thickness; At = max I t -- to I, 
maximum temperature drop, deg; T = (t- to)/At, dimensionless temperature; Tm, mean fluid 
temperature over the layer cross section; u and v, velocity components along the x and y axes, 
m/sec; Uo, mean isothermal-flux velocity (for x < 0), m/sec; ~, <a>, local and mean heat- 
transfer coefficients, W/m2"deg; Bj, eigenvalues of the linear problem; 5, layer thickness, 
m; %, fluid coefficient of heat conductivity, W/m.deg; ~, dynamic fluid viscosity, kg/m-sec; 
~, kinematic viscosity, mi/sec; 8 = (t -- to)/At, dimensionless wall temperature; ~ = x/3Pe6o, 
n = y/~oh, dimensionless coordinates. Subscripts: f, fluid parameters at the mean-mass tem- 
perature; w, fluid parameters at the wall temperature; O, fluid parameters for an isothermal 
flux (x < 0). 
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NATURAL CONVECTIVE HEAT EXCHANGE BETWEEN ISOTHERMAL CONCENTRIC SPHERES 

S. V. Solov'ev and A. S. Lyalikov UDC 536.25 

The problem of natural convection in spherically concentric layers is considered. 
The heat-exchange similarity equation obtained agrees satisfactorily with the 
experimental data of [5]. 

At the present time there is great interest in analytical and numerical methods of solv- 
ing natural convective problems in finite volumes. The majority of studies consider planar 
problems, with a minority devoted to cylindrical layers, while [1-3] consider spherical 
layers. A bibliography of the first two types of problem is presented in [4]. In [i] the 
authors consider natural convection of a viscous compressible gas (air, P = 0.714) for outer/ 
inner diameter ratios in the range l.l-~<d2/d~ ~6 and Grashof numbers from i0 ~ to 106 . Law- 
rence et al. [2] considered natural convection of incompressible air at low Rayleigh numbers. 
The authors attempted to fill a gap in theory for this region, but comparison of their results 
with the experiments of Bishop et al. [5] indicates a lack of success. In [3] (where in con- 
trast to [i, 2] the exterior sphere was the hotter), natural convection of a compressible 
gag (air, P = 0.71) was considered. The heat-exchange similarity equation obtained in [3] 
was compared with the results of [5] and good agreement was found. 

In the experimental study [5] a generalized heat-exchange equation was obtained for cal- 
culation of average heat liberation in spherical isothermal concentric layers for a wide 
range of Rayleigh numbers (determined by width of the layer) and Prandtl numbers (P = 4.7- 
4148; Ra = 1.3 �9 i03-5.8-i0 e, D/d = 1.09-2.81). 

But, it is often of importance to know such local characteristics as the velocity field, 
the temperature in the layer, the character of liquid motion, and local thermal fluxes (which 
are often quite complex), which at present cannot be experimentally determined. These dif- 
ficulties may be avoided by numerical solution of the problem. Moreover, [1-3] considered only 
air, reducing the range of application of the analytical and numerical results obtained for 
calculation of natural convective heat exchange in spherical concentric liquid (gas) layers, 
the thermophysical characteristics of which differ from air. Therefore, in order to obtain 
a solution over a broadened range of Prandtl and Rayleigh numbers, an attempt was made to 
numerically solve the problem of natural convection in spherical concentric layers of both 
gases and liquids. Prandtl and Rayleigh numbers were varied over the range P = 0.2-5, Rad = 

TABLE i. Coefficients of Eq. (i) 

(.0 

R sin 

T 

a ~  

R z sin -~ 

G p  ~ - 

bq~ 
R 2 sin 2 [~ 

GP 

R2 sin 2 [$ 

% 

1 

l 

dq~ 

[ . _ aT ~ ~ a T \  

R 2 sin z [~ 
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